Details for this torrent 

Python for Data Science Essential Training
Type:
Other > Other
Files:
47
Size:
820.04 MiB (859874976 Bytes)
Tag(s):
Python Data Science
Uploaded:
2018-01-07 18:16:43 GMT
By:
sky02nov
Seeders:
0
Leechers:
1
Comments
0  

Info Hash:
0D487E7FFBBFEDE506D0F4719E5BF66E51023448




(Problems with magnets links are fixed by upgrading your torrent client!)
Lynda - Python for Data Science Essential Training

Author - Lillian Pierson, P.E.

Released: 4/10/2017

By using Python to glean value from your raw data, you can simplify the often complex journey from data to value. In this practical, hands-on course, learn how to use Python for data preparation, data munging, data visualization, and predictive analytics. Instructor Lillian Pierson, P.E. covers the essential Python methods for preparing, cleaning, reformatting, and visualizing your data for use in analytics and data science. She helps to provide you with a working understanding of machine learning, as well as outlier analysis, cluster analysis, and network analysis. Plus, Lillian explains how to create web-based data visualizations with Plot.ly, and how to use Python to scrape the web and capture your own data sets.


Topics include:

# Getting started with Jupyter Notebooks
# Visualizing data: basic charts, time series, and statistical plots
# Preparing for analysis: treating missing values and data transformation
# Data analysis basics: arithmetic, summary statistics, and correlation analysis
# Outlier analysis: univariate, multivariate, and linear projection methods
# Introduction to machine learning
# Basic machine learning methods: linear and logistic regression, Naïve Bayes
# Reducing dataset dimensionality with PCA
# Clustering and classification: k-means, hierarchical, and k-NN
# Simulating a social network with NetworkX
# Creating Plot.ly charts
# Scraping the web with Beautiful Soup
Lynda, Python, Data, Science, Essential, Training

004 Exercise files.mp4974.64 KiB
003 Getting started with Jupyter.mp42.29 MiB
031 Intro to network analysis.mp44.46 MiB
Ex_Files_Python_Data_Science_EssT.zip5.48 MiB
026 Multivariate analysis for outlier detection.mp45.63 MiB
002 What you should know.mp45.73 MiB
022 Introduction to machine learning.mp47.86 MiB
009 Group and aggregate data.mp49.24 MiB
014 Create visualizations from time series data.mp411.43 MiB
023 Explanatory factor analysis.mp411.78 MiB
034 Generate stats on nodes and inspect graphs.mp411.96 MiB
007 Remove duplicates.mp412.64 MiB
046 Next steps.mp412.85 MiB
043 Explore NavigatableString objects.mp413.64 MiB
045 Web scrape in practice.mp413.74 MiB
027 A linear projection method for multivariate data.mp414.52 MiB
018 Summarize categorical data.mp415.75 MiB
021 Transform dataset distributions.mp415.77 MiB
017 Generate summary statistics.mp415.89 MiB
025 Extreme value analysis using univariate methods.mp415.92 MiB
011 Define plot elements.mp416.17 MiB
033 Simulate a social network.mp417.5 MiB
041 Create Plotly point maps.mp417.63 MiB
030 Instance-based learning with k-Nearest Neighbor.mp417.77 MiB
035 Linear regression model.mp417.97 MiB
024 Principal component analysis (PCA).mp419 MiB
020 Non-parametric methods.mp419.48 MiB
016 Use NumPy arithmetic.mp419.55 MiB
001 Welcome.mp419.79 MiB
040 Create Plotly choropleth maps.mp419.82 MiB
044 Parse data.mp420.53 MiB
039 Create statistical charts.mp420.54 MiB
012 Format plots.mp420.69 MiB
015 Construct histograms, box plots, and scatter plots.mp420.93 MiB
010 Create standard line, bar, and pie plots.mp421.04 MiB
037 Naive Bayes classifiers.mp421.77 MiB
036 Logistic regression model.mp421.82 MiB
028 K-means method.mp422.51 MiB
008 Concatenate and transform data.mp423.14 MiB
029 Hierarchical methods.mp423.6 MiB
042 Introduction to Beautiful Soup.mp423.88 MiB
019 Parametric methods.mp424.75 MiB
013 Create labels and annotations.mp424.79 MiB
032 Work with graph objects.mp428.49 MiB
005 Filter and select data.mp429.92 MiB
038 Create basic charts.mp436.66 MiB
006 Treat missing values.mp442.78 MiB