Details for this torrent 

Lynda - Cleaning Bad Data in R
Type:
Other > Other
Files:
55
Size:
265.64 MiB (278539215 Bytes)
Uploaded:
2018-08-24 18:18:56 GMT
By:
xHOBBiTx
Seeders:
1
Leechers:
0
Comments
0  

Info Hash:
2B33E09DBC6A68FF1F484E22660F018A60FEE8CA




(Problems with magnets links are fixed by upgrading your torrent client!)
Title: Cleaning Bad Data in R
Publisher: Lynda
Type: Big Data
URL: https://www.lynda.com/course-tutorials/Cleaning-Bad-Data-R/711824-2.html
Author: Mike Chapple
Duration: 1h 54m
Skill: Beginner

1.Introduction/01.Data is messy.en.srt1.85 KiB
1.Introduction/01.Data is messy.mp45.84 MiB
1.Introduction/02.What you need to know.en.srt2.13 KiB
1.Introduction/02.What you need to know.mp41.63 MiB
2.1. Missing Data/03.Types of missing data.en.srt5.9 KiB
2.1. Missing Data/03.Types of missing data.mp45.48 MiB
2.1. Missing Data/04.Missing values.en.srt20.03 KiB
2.1. Missing Data/04.Missing values.mp421.55 MiB
2.1. Missing Data/05.Missing rows.en.srt9.63 KiB
2.1. Missing Data/05.Missing rows.mp414.53 MiB
2.1. Missing Data/06.Aggregations and missing values.en.srt7.87 KiB
2.1. Missing Data/06.Aggregations and missing values.mp48.9 MiB
3.2. Duplicated Data/07.Duplicated rows and values.en.srt8.16 KiB
3.2. Duplicated Data/07.Duplicated rows and values.mp48.33 MiB
3.2. Duplicated Data/08.Aggregations in the data set.en.srt6.08 KiB
3.2. Duplicated Data/08.Aggregations in the data set.mp49.03 MiB
4.3. Formatting Data/09.Converting dates.en.srt9.35 KiB
4.3. Formatting Data/09.Converting dates.mp410.16 MiB
4.3. Formatting Data/10.Unit conversions.en.srt6.45 KiB
4.3. Formatting Data/10.Unit conversions.mp47.49 MiB
4.3. Formatting Data/11.Numbers stored as text.en.srt5.7 KiB
4.3. Formatting Data/11.Numbers stored as text.mp48.3 MiB
4.3. Formatting Data/12.Text improperly converted to numbers.en.srt5.23 KiB
4.3. Formatting Data/12.Text improperly converted to numbers.mp46.11 MiB
4.3. Formatting Data/13.Inconsistent spellings.en.srt12.37 KiB
4.3. Formatting Data/13.Inconsistent spellings.mp415.58 MiB
5.4. Outliers/14.Screening for outliers.en.srt8.09 KiB
5.4. Outliers/14.Screening for outliers.mp46.41 MiB
5.4. Outliers/15.Handling outliers.en.srt3.49 KiB
5.4. Outliers/15.Handling outliers.mp42.83 MiB
5.4. Outliers/16.Outliers use case.en.srt5.77 KiB
5.4. Outliers/16.Outliers use case.mp47.96 MiB
5.4. Outliers/17.Outliers in subgroups.en.srt6.45 KiB
5.4. Outliers/17.Outliers in subgroups.mp47.24 MiB
5.4. Outliers/18.Detecting illogical values.en.srt5.77 KiB
5.4. Outliers/18.Detecting illogical values.mp46.01 MiB
6.5. Tidy Data/19.What is tidy data.en.srt6.41 KiB
6.5. Tidy Data/19.What is tidy data.mp410.51 MiB
6.5. Tidy Data/20.Variables, observations, and values.en.srt8.3 KiB
6.5. Tidy Data/20.Variables, observations, and values.mp47.94 MiB
6.5. Tidy Data/21.Common data problems.en.srt13.39 KiB
6.5. Tidy Data/21.Common data problems.mp413.86 MiB
6.5. Tidy Data/22.Wide vs. long data sets.en.srt5.93 KiB
6.5. Tidy Data/22.Wide vs. long data sets.mp45.51 MiB
6.5. Tidy Data/23.Making wide data sets long.en.srt8.27 KiB
6.5. Tidy Data/23.Making wide data sets long.mp410.62 MiB
6.5. Tidy Data/24.Making long data sets wide.en.srt6.64 KiB
6.5. Tidy Data/24.Making long data sets wide.mp47.59 MiB
7.6. Red Flags/25.Suspicious values.en.srt8.16 KiB
7.6. Red Flags/25.Suspicious values.mp48.85 MiB
7.6. Red Flags/26.Suspicious multiples.en.srt4.04 KiB
7.6. Red Flags/26.Suspicious multiples.mp44.84 MiB
8.Conclusion/27.What's next.en.srt2.12 KiB
8.Conclusion/27.What's next.mp42.57 MiB
Exercise Files/Ex_Files_Cleaning_Bad_Data_R.zip39.76 MiB